next up previous contents
Next: Index Up: thesis Previous: C. Miscellanea   Contents

Bibliography

1
AUTON (2004).
The Auton Lab.
http://www.autonlab.org.

2
Breese, J. S., Heckerman, D., and Kadie, C. (1998).
Empirical Analysis of Predictive Algorithms for Collaborative Filtering.
In Proceedings of UAI-1998: The Fourteenth Conference on Uncertainty in Artificial Intelligence.

3
Burges, C. (1998).
A tutorial on Support Vector Machines for Pattern Recognition.
Data Mining and Knowledge Discovery, 2(2):955-974.

4
CiteSeer (2002).
CiteSeer Scientific Digital Library.
http://www.citeseer.com.

5
Duda, R. O. and Hart, P. E. (1973).
Pattern Classification and Scene Analysis.
John Wiley & Sons.

6
GLIM (2004).
Generalised Linear Interactive Modeling package.
http://www.nag.co.uk/stats/GDGE_soft.asp, http://lib.stat.cmu.edu/glim/.

7
Greenbaum, A. (1997).
Iterative Methods for Solving Linear Systems, volume 17 of Frontiers in Applied Mathematics.
SIAM.

8
GSL (2004).
GNU Scientific Library (GSL).
http://www.gnu.org/software/gsl.

9
Hammersley, J. M. (1950).
The Distribution of Distance in a Hypersphere.
Annals of Mathematical Statistics, 21:447-452.

10
Hastie, T., Tibshirani, R., and Friedman, J. (2001).
The Elements of Statistical Learning.
Springer Verlag.

11
Hennessy, J. L. and Patterson, D. A. (1996).
Computer Architecture: A Quantitative Approach.
Morgan Kaufman.

12
Hogg, R. V. and Craig, A. T. (1995).
Introduction to Mathematical Statistics.
Prentice-Hall.

13
Hosmer, D. W. and Lemeshow, S. (2000).
Applied Logistic Regression.
Wiley-Interscience, 2 edition.

14
IMDB (2002).
Internet Movie Database.
http://www.imdb.com.

15
Joachims, T. (1998).
Text categorization with support vector machines: learning with many relevant features.
In Nédellec, C. and Rouveirol, C., editors, Proceedings of ECML-98, 10th European Conference on Machine Learning, pages 137-142, Chemnitz, DE. Springer Verlag, Heidelberg, DE.

16
Joachims, T. (1999).
Making large-Scale SVM Learning Practical.
In Advances in Kernel Methods - Support Vector Learning. MIT Press.

17
Joachims, T. (2002a).
Learning to Classify Text Using Support Vector Machines.
PhD thesis, Cornell University.

18
Joachims, T. (2002b).
SVM$ ^{\mbox{\emph{light}}}$.
http://svmlight.joachims.org.

19
Komarek, P., Liu, T., and Moore, A. (2004).
Auton Fast Classifiers.
http://www.autonlab.org.

20
Komarek, P. and Moore, A. (2003).
Fast Robust Logistic Regression for Large Sparse Datasets with Binary Outputs.
In Artificial Intelligence and Statistics.

21
Kozen, D. C. (1992).
The Design and Analysis of Algorithms.
Springer-Verlag.

22
Kubica, J., Goldenberg, A., Komarek, P., Moore, A., and Schneider, J. (2003).
A comparison of statistical and machine learning algorithms on the task of link completion.
In KDD Workshop on Link Analysis for Detecting Complex Behavior, page 8.

23
Lay, D. C. (1994).
Linear Algebra And Its Applications.
Addison-Wesley.

24
Liu, T., Moore, A., and Gray, A. (2003).
Efficient Exact k-NN and Nonparametric Classification in High Dimensions.
In Proceedings of Neural Information Processing Systems, volume 15.

25
McCullagh, P. and Nelder, J. A. (1989).
Generalized Linear Models, volume 37 of Monographs on Statistics and Applied Probability.
Chapman & Hall, 2 edition.

26
McIntosh, A. (1982).
Fitting Linear Models: An Application of Conjugate Gradient Algorithms, volume 10 of Lecture Notes in Statistics.
Springer-Verlag, New York.

27
Minka, T. P. (2001).
Algorithms for maximum-likelihood logistic regression.
Technical Report Stats 758, Carnegie Mellon University.

28
Moore, A. W. (2001a).
A Powerpoint tutorial on Probabilistic Machine Learning.
Available from http://www.cs.cmu.edu/$ \sim$awm/tutorials/prob.html.

29
Moore, A. W. (2001b).
A Powerpoint tutorial on Support Vector Machines.
Available from http://www.cs.cmu.edu/$ \sim$awm/tutorials/svm.html.

30
Myers, R. H., Montgomery, D. C., and Vining, G. G. (2002).
Generalized Linear Models, with Applications in Engineering and the Sciences.
John Wiley & Sons.

31
Nash, S. G. and Sofer, A. (1996).
Linear and Nonlinear Programming.
McGraw-Hill.

32
NCI Open Compound Database (2000).
National Cancer Institute Open Compound Database.
http://cactus.nci.nih.gov/ncidb2.

33
Ng, A. Y. and Jordan, M. I. (2001).
On Discriminative vs. Generative classifiers: A comparison of logistic regression and naive Bayes.
In Proceedings of Neural Information Processing Systems, volume 13.

34
Orr, M. (1996).
Introduction to Radial Basis Function Networks.
http://www.anc.ed.ac.uk/~mjo/intro/intro.html.

35
Paul Komarek (2003).
Robust Cholesky Performance on Intel's P4.
http://www.andrew.cmu.edu/~komarek/notwork/ramblings/RobustCholeskyPerf/RobustCholeskyPerf.html.

36
Pelleg, D. and Moore, A. (2002).
Using Tarjan's Red Rule for Fast Dependency Tree Construction.
In Proceedings of Neural Information Processing Systems, volume 14.

37
Press, W. H., Teukolsky, S. A., Vetterlling, . W. T., and Flannery, B. P. (2002).
Numerical Recipes in C.
Cambridge University Press.

38
Quinlan, J. R. (1993).
C4.5: Programs for Machine Learning.
San Mateo: Morgan Kaufmann.

39
Russel, S. and Norvig, P. (1995).
Artificial Intelligence: A Modern Approach.
Prentice Hall.

40
Schutze, H., Hull, D. A., and Pedersen, J. O. (1995).
A Comparison of Classifiers and Document Representations for the Routing Problem.
In Research and Development in Information Retrieval, pages 229-237.

41
Shewchuk, J. R. (1994).
An Introduction to the Conjugate Gradient Method Without the Agonizing Pain.
Technical Report CS-94-125, Carnegie Mellon University, Pittsburgh.

42
Vapnik, V. N. (1995).
The Nature of Statistical Learning Theory.
Springer-Verlag.

43
Wasserman, L. (2004).
All of Statistics: A Concise Course in Statistical Inference.
Springer.

44
Watkins, D. S. (1991).
Fundamentals of Matrix Computations.
John Wiley & Sons.

45
Wolpert, D. H. (1990).
Stacked Generalization.
Technical Report LA-UR-90-3460, Los Alamos National Labs, Los Alamos, NM.

46
Yan, L., Dodier, R., Mozer, M. C., and Wolniewicz, R. (2003).
Optimizing classifier performance via an approximation to the wilcoxon-mann-whitney statistic.
In Proceedings of the 20th International Conference on Machine Learning.

47
Yang, Y. and Liu, X. (1999).
A re-examination of text categorization methods.
In 22nd Annual International SIGIR, pages 42-49, Berkeley.

48
Zhang, J., Jin, R., Yang, Y., and Hauptmann, A. G. (2003).
Modified logistic regression: An approximation to svm and its applications in large-scale text categorization.
In Proceedings of the 20th International Conference on Machine Learning.

49
Zhang, T. and Oles, F. J. (2001).
Text Categorization Based on Regularized Linear Classification Methods.
Kluwer Academic Publishers.


next up previous contents
Next: Index Up: thesis Previous: C. Miscellanea   Contents
Copyright 2004 Paul Komarek, komarek@cmu.edu